Synthesis and Reactions of Titanacycles Containing Group 14 Elements and Their Zirconium Analogues

Nami Choi, Satoshi Morino, Shin-ichiro Sugi, and Wataru Ando*

Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305

(Received November 7, 1995)

Lithium dimesitylgermanedithiolate reacted with titanocene or zirconocene dichloride to give 2,2-dimesityl-1,3-dithia-2-germa-4-titanacycle (**3a**) and its zirconocene analogue (**3b**), which afforded a stable 2,3,4,5-tetrathiagermolane (**4**) in treatment with S_2Cl_2 . The reaction of **3b** with Ph_2GeCl_2 gave unsymmetric 1,3,2,4-dithiadigermetane (**5**). The bis(η^5 -cyclopentadienyl) derivative of cis-2,3-di-t-butyl-2,3-diphenyl-1,4-dithia-2,3-disila-5-titanacyclopentane (**7a**) obtained from lithium 1,2-di-t-butyl-1,2-diphenyldisilane-1,2-dithiolate reacted with electrophilic reagents (SCl_2 , S_2Cl_2 , Se_2Cl_2 , R_2GeCl_2) to give the corresponding heterocycles.

Heterocycles containing group 14 elements1) have received much attention not only as their carbon-based analogues²⁾ but also in the field of material science. On the other hand, the chemistry of metallacycles with incorporated titanocene or zirconocene units3) has attracted much interest, and these compounds have found widespread applications in organic synthesis.⁴⁾ Nevertheless, the utility of these promising building blocks as precursors of heterocyclic compounds containing silicon and germanium has not been fully realized. The titanacycles containing four-membered TiS₂E rings (E=Si, Ge, Sn) were synthesized by Rauchfuss^{4c)} and Steudel, 3d) and showed synthetic limitation for the bulky group substituted titanacycles. We have succeeded in the synthesis of bulky group substituted titanacycle, namely 2, 2-bis(2,4,6-trimethylphenyl)-1,3-dithia-2-germa-4-titanacycle (3a) (hereafter 2,4,6-trimethylphenyl = mesityl, abbreviated to Mes), and its zirconium analogue (3b) by using dimesitylgermanedithiol (2) as a starting material. By using disilane-1,2-dithiol in a similar manner, we could achieve the preparation of dithiadisilatitanacycle and zirconacycle. Our preliminary paper reported the synthesis and reaction of bis(η^5 -cyclopentadienyl) derivative of *cis*-2,3-di-*t*-butyl-2, 3-diphenyl-1,4-dithia-2,3-disila-5-titanacyclopentane (7a).⁵⁾ In the present paper we report the full details of synthesis as well as structural features of disilatitanacycle 7a and its zirconocene analogue 7b; furthermore, we demonstrate their suitability as precursor for a variety of heterocycles containing a 1,4-dithia-2,3-disila fragment.

Results and Discussion

Synthesis of Germatitanacycle and Its Zirconium Analogue. Diphenyldichlorogermane and -silane were easily reacted with 2 equiv of Li₂S to provide germane- and silane-dithiolate. But dimesityldichlorogermane reacted with 2 equiv of Li₂S and did not yield lithium germanedithiolate but rather dithiadigermetane (1) (Scheme 1).^{3d)} Dilithium

dimesitylgermanedithiolate was readily obtained by the treatment of a THF solution of $Mes_2Ge(SH)_2$ (2) with a THF solution of $LiBEt_3H$ (2.2 equiv) at room temperature. Successive addition of a THF solution of dichlorobis(η^5 -cyclopentadienyl)titanium to $Mes_2Ge(SLi)_2$ gave a germatitanacycle **3a** as a green crystalline solid in 70% yield as shown in Scheme 2. Germazirconacycle **3b** was also obtained as a yellow solid in 90% yield in a similar manner. Depending on the synthetic target, the titanium or zirconium metallacycle need not be isolated, but "one-pot" synthesis can be carried out.

Reaction of Titanacycle 3a and Zirconacycle 3b with Some Electrophiles. Germatitanacycle 3a underwent ready substitution reaction at the titanocene moiety with S_2Cl_2 in CS_2 to give tetrathiagermolane 4 as a yellow oil in 53% yield (Eq. 1). When a toluene solution of 3b and Ph_2GeCl_2 was refluxed for 20 h, unsymmetric 1,3,2,4-di thiadigermetane 5 was isolated after preparative gel permeation liquid chromatography (GPC) in 52% yield (Eq. 2).

$$3a + S_2Cl_2 \xrightarrow{CS_2, -78 \text{ °C}} Mes_2Ge \xrightarrow{S} S$$
 (1)

Synthesis of 1,4-Dithia-2,3-disilametallacyclopentanes (7a and 7b). 1,2-Di-t-butyl-1,2-diphenyldisilane-1,2-bis(trifluoromethanesulfonate) was treated with 2 equiv of Li₂S and with some added Cp₂TiCl₂ at room temperature, the disilati-

$$Mes_{2}Ge \underbrace{ GeMes_{2} \leftarrow Mes_{2}GeCl_{2} + 2 Li_{2}S }_{S} \underbrace{ Mes_{2}Ge(SLi)}_{S}$$

$$Mes = 2,4,6-trimethylphenyl$$

$$Scheme 1.$$

$$Mes_{2}Ge(SH)_{2} + 2 LiBEt_{3}H \underbrace{ THF}_{S}$$

$$Mes_{2}Ge(SLi)_{2} + Cp_{2}MCl_{2}$$

$$Mes_{2}$$

Scheme 2.

tanacycle **7a** was obtained in very low yield. Disilametallacyclopentanes, **7a** and **7b** could be prepared from *meso*-1,2 -di-*t*-butyl-1,2-diphenyldisilane-1,2-dithiol **6** in high yield, as shown in Scheme 3. Disilatitanacycle **7a** was isolated as green crystals after GPC (eluent; toluene) purification in 80% yield, and zirconacycle **7b** as a yellow crystalline solid in 90% yield. Disilatitanacycle **7a** is relatively stable toward moisture and air, but zirconacycle **7b** is unstable toward moisture and is air sensitive. The structure of **7a** was unequivocally determined by single crystal X-ray diffraction analysis.

Reaction of Disilatitanacycle 7a with Various Electrophiles. By using the disilametallacycles 7a and 7b, the various disilaheterocycles are readily prepared, as shown

 Cp_2

7a; M=Ti **7b**: M=Zr in Scheme 4 and Table 1. When a disilatitanacycle **7a** was treated with 1.0 equiv of sulfur dichloride or sulfur monochloride in CS₂ at -78 °C, the green solution turned to red during a 30 min period. The solvent was removed in vacuo and pentane was added. After the resulting Cp₂TiCl₂ was filtered off, and the solvent was evaporated, the residue recrystallized from pentane to afford 1,2,3-trithia-4,5-disilacyclopentane (**8a**) or 1,2,3,4-tetrathia-5,6-disilacyclohexane (**8b**). The products **8a** and **8b** could be readily isolated by GPC in 90% and 92% yields, respectively. The unequivocal molecular structure of **8a** was determined by single-crystal X-ray diffraction analyses. Compounds, **8a** and **8b** are rare, and no general synthetic route to these compounds had been reported prior to our studies.⁵⁾ Although silyl-sub-

8

Scheme 4.

 $E = S (8a), S_2 (8b), Se_2 (8c),$

PhGe (8d), Ph₂Si (8e)

Table 1. Reactions of 7a or 7b with Various Electrophiles

Entry	Electrophile	Product	Solvent	Time	Temp	Y	ield/%
				h	°C	7a	7b
1	SCl ₂	8a	CS_2	0.5	-78	90	93
2	S_2Cl_2	8b	CS_2	0.5	-78	92	66
3	Se_2Cl_2	8c	CS_2	0.5	-78	90	Quant.
4	Ph_2GeCl_2	8d	Toluene	24	110	55	40
5	Ph_2SiCl_2	8e	Xylene	72	140		

stituted sulfides are well-known as sulfur-transfer reagents⁶⁾ by Si-S bond cleavage, the reaction of 7a or 7b with SCl₂ or S_2Cl_2 was performed on the site of Ti or Zr. The relative reactivity of the Ti-S and Si-S bonds in four-membered TiS2Si ring was explained as an example of frontier orbital control by Rauchfuss et al.⁷⁾ Treatment of disilametallacycles, **7a** and **7b** with selenium monochloride at -78 °C afforded the dithiadiselenadisilacyclohexane 8c in 90-100% yield. Compound 8c was stable at room temperature, but decomposed under irradiation, liberating selenium as a red precipitate to yield dithiaselenadisilacyclopentane. In the transformations of 7a with Ph₂GeCl₂ more drastic conditions, i.e. high temperature and long reaction time, were necessary to achieve full conversion. The reaction of 7a with dichlorodiphenylgermane afforded a corresponding dithiadisilagermacyclopentane derivative 8d in 55% yield. On the other hand,

the reaction of **7a** with halosilane produced dithiatrisilacy-clopentane **8e** only with difficulty. Indeed, **7a** did not react with dichlorodiphenylsilane even at xylene reflux for 72 h.

Dechalcogenation of 8a and 8b. Furthermore, we have investigated the desulfurization of compounds **8a** and **8b** by phosphines. To a benzene- d_6 solution of the compound **8b** (0.06 mmol) hexamethylphosphorous triamide (HMPT, 1.1 equiv) was added at room temperature in an NMR tube (Eq. 3). We observed the formations of **8a** and

(Me₂N)₃P=S in a few minutes. Desulfurization of **8a** was carried out by PPh₃ (1.1 equiv) at hexane reflux for 1 h. After the usual work up, recrystallization from hexane gave 2,4-dit-butyl-2,4-diphenyl-1,3-dithia-2,4-disilacyclobutane **9** containing *cis* and *trans* isomers (ratio: *cis/trans*=1/9) without 1,2-dithia-3,4-disilacyclobutane **10** as shown in Scheme 5. The desulfurization of **8a** by HMPT at room temperature also gave similar results. The mixture of *cis*- and *trans*-isomers **9** was also obtained from desulfurization of **8b** (*cis*). The formation of **9** admits of two plausible routes, as shown in Scheme 6. One possible route is an intramolecular rearrangement via an intermediate **10**. The stereospecific rearrangement of 1,2-dioxa-3,4-disilacyclobutanes to 1,3-dioxa-

Scheme 5.

Scheme 6.

2,4-disilacyclobutanes are reported by West et al.⁸⁾ Since this reaction is not stereospecific, the first route (a) is not likely. Another route (b) is likely, which is the dimerization of thioxosilane derivative 11.

Structures of Dithiadisilatitanacycle 7a, Trithiadisilacyclopentane 8a, and Cyclodisilathiane 9. Crystal data of 7a, 8a, and 9 are summarized in Table 2. An ORTEP drawings of 7a (molecule 1), 8a and 9 are shown in Figs. 1, 2, and 3, respectively. Their selected bond distances (Å) and angles (degree) for the core rings are listed in Tables 3, 4, 5, and 6. Compound 7a crystallized with two independent molecules in a crystal unit. Both independent molecules of

7a are essentially identical structurally. The titanacycle of **7a** exhibits a half-chair conformation as depicted in Fig. 1. The Ti–S bond lengths (2.39 Å resp. 2.47 Å) are within the normal range (2.42—2.45 Å), 3c) the Si–S bonds (2.13 Å) are slightly shortened (usually 2.16—2.17 Å) 3c). Interestingly, the Ti–S–Si bond angles (109.7° resp. 113.2°) are larger than those of other five-membered dithiatitanacycles (e.g. o-(–SC₆H₄S–)TiCp₂: 95.7—97.0°; 9a) (–SCH=CHS–)TiCp₂: 94.2—95.0°) 9b) and resemble those of acyclic derivatives (e.g. Cp₂Ti(SPh)₂: 113.6—115.5°). 9c) On the other hand, the S–Ti–S bond angle (93.9°) takes an intermediate value

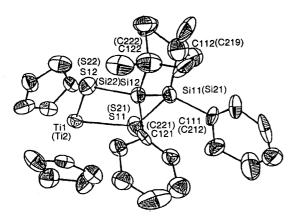


Fig. 1. Molecular structure of 7a (molecule 1).

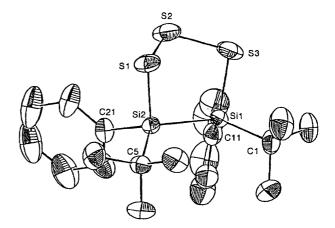


Fig. 2. Molecular structure of 8a.

Table 2. Crystallographic Data for 7a, 8a, and 9

	7a	8a	9 (<i>trans</i>)
Formula	$C_{30}H_{38}Si_2S_2Ti$	$C_{20}H_{28}Si_2S_3$	$C_{20}H_{28}Si_2S_2$
$M_{ m w}$	566.84	420.81	388.75
Color, habit	Green, rod	Yellow, rod	White, rod
Cryst dim./mm	$0.50 \times 0.50 \times 0.40$	$0.50 \times 0.50 \times 0.20$	$0.50 \times 0.50 \times 0.80$
Cryst. system	Tetragonal	Triclinic	Orthorhombic
Space group	I_4^-	P_1^-	$P2_{1}2_{1}2_{1}$
a/Å	16.954(1)	8.013(1)	9.781(1)
b/Å		9.860(1)	14.337(1)
c/Å	41.679(3)	16.423(2)	15.428(1)
α/deg		86.60(1)	
β /deg		82.50(1)	
γ/deg		64.56(26)	
Cell volume/Å ³	11980.3(11)	1161.8(8)	2163.4(3)
Z	16	2	4
$d/g \text{cm}^{-3}$	1.26	1.20	1.19
$\overline{F_{000}}$	4800	448	832
Temp/°C	23±1	23 ± 1	23±1
Scan range/deg	$0.8+0.530 \tan \theta$	$0.4+0.450 an \theta$	$0.6+0.520 \tan \theta$
Radiation ($\lambda = 0.71073 \text{ Å}$)	$Mo K\alpha$	$Mo K \alpha$	$Mo K\alpha$
2θ max/deg	50.0	50.0	50.0
μ /cm ⁻¹	5.1	4.1	3.4
No. of obsd refitns $(I > 3\sigma(I))$	3212	3367	1537
No. of refined params	631	226	217
R	0.055	0.061	0.032
$R_{ m w}$	0.063	0.087	0.031
(shift/error) _{max}	4.93σ	0.22σ	0.41σ
Largest/lowest peak	0.21(4)/-0.06(0)	0.53(10)/-0.33(0)	0.25(3)/-0.11(0)
in final diff map/e Å ⁻³	• • • • • • • • • • • • • • • • • • • •	,	

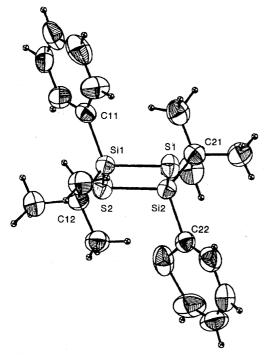


Fig. 3. Molecular structure of 9.

Table 3. Selected Bond Lengths (Å) of 7a

Molecule 1		Molecule 2	
Ti1-S11	2.467(4)	Ti2-S21	2.437(4)
Ti1-S12	2.388(4)	Ti2-S22	2.430(4)
S11-Si11	2.134(5)	S21-Si21	2.124(5)
S12-Si12	2.130(5)	S22-Si22	2.104(6)
Si11-Si12	2.408(5)	Si21-Si22	2.372(5)
Si11-C111	1.90(1)	Si21-C212	1.88(1)
Si11-C112	2.03(2)	Si21-C219	1.92(1)
Si12-C121	1.88(1)	Si22-C221	1.91(1)
Si12-C122	1.99(2)	Si22-C222	1.88(1)

Table 4. Selected Bond Angles (degree) of 7a

	Molecule 2	
93.9(2)	S21-Ti2-S22	93.9(1)
113.2(2)	Ti2-S21-Si21	108.4(2)
109.7(2)	Ti2-S22-Si22	113.0(2)
99.0(2)	S21-Si21-Si22	100.3(2)
100.9(2)	S22-Si22-Si21	102.5(2)
108.2(5)	S21-Si21-C212	105.0(4)
110.7(6)	S21-Si21-C219	110.4(5)
113.2(5)	Si22-Si21-C212	120.0(4)
119.2(6)	Si22-Si21-C219	113.7(5)
106.1(7)	C212-Si21-C219	106.8(6)
114.9(4)	S22-Si22-C221	106.5(5)
108.7(6)	S22-Si22-C222	109.4(4)
109.9(4)	Si21-Si22-C221	109.9(5)
122.0(6)	Si21-Si22-C222	121.7(4)
101.1(6)	C221-Si22-C222	106.1(6)
	113.2(2) 109.7(2) 99.0(2) 100.9(2) 108.2(5) 110.7(6) 113.2(5) 119.2(6) 106.1(7) 114.9(4) 108.7(6) 109.9(4) 122.0(6)	93.9(2) S21-Ti2-S22 113.2(2) Ti2-S21-Si21 109.7(2) Ti2-S22-Si22 99.0(2) S21-Si21-Si22 100.9(2) S22-Si22-Si21 108.2(5) S21-Si21-C212 110.7(6) S21-Si21-C219 113.2(5) Si22-Si21-C219 119.2(6) Si22-Si21-C219 106.1(7) C212-Si21-C219 114.9(4) S22-Si22-C221 108.7(6) S22-Si22-C222 109.9(4) Si21-Si22-C221 122.0(6) Si21-Si22-C222

between five-membered titanacycles (e.g. o-(-SC₆H₄S-)-TiCp₂: 82.2°; ^{9a)} (-SCH=CHS-)TiCp₂: 83.2°) ^{9b)} and acyclic ones (e.g. Cp₂Ti(SPh)₂: 99.3°). ^{9c)} The trithiadisilacyclopen-

Table 5. Selected Bond Lengths (Å) and Angles (degree) of 8a

Bond lengths (Å)		Bond angles (degree)		
S1–S2	2.060(2)	S1-S2-S3	103.3(1)	
S2-S3	2.064(3)	Si2-S1-S2	92.7(1)	
S1-Si2	2.171(2)	Si1-S3-S2	97.9(1)	
S3-Si1	2.178(2)	S1-Si2-Si1	100.2(1)	
Si1-Si2	2.408(2)	S3-Si1-Si2	100.6(1)	
Si1-C11	1.876(7)	S3-Si1-C1	103.2(2)	
Si1-C1	1.912(7)	S3-Si1-C11	109.4(2)	
Si1-C5	1.909(5)	Si2-Si1-C1	122.2(2)	
Si2-C21	1.881(6)	Si2-Si1-C11	110.4(2)	
		C1-Si1-C11	109.9(3)	
		S1-Si2-C5	104.8(2)	
		S1-Si2-C21	108.3(2)	
		Si1-Si2-C5	123.3(2)	
		Si1-Si2-C21	110.7(2)	
		C5-Si2-C21	108.2(2)	

Table 6. Selected Bond Lengths (Å) and Angles (degree) of 9

Bond lengths (Å)		Bond angles (degree)		
S1-Si1	2.148(2)	Si1-S1-Si2	80.7(1)	
S1-Si2	2.149(2)	Si1-S2-Si2	80.6(1)	
S2-Si1	2.149(2)	S1-Si1-S2	99.4(1)	
S2-Si2	2.149(2)	S1-Si2-S2	99.3(1)	
Si1-C11	1.889(4)	S1-Si1-C11	110.2(1)	
Si1-C12	1.854(5)	S1-Si1-C12	111.3(1)	
Si2-C21	1.885(4)	S2-Si1-C11	111.9(2)	
Si2-C22	1.865(4)	S2-Si1-C12	110.6(1)	
		C11-Si1-C12	112.8(2)	
		S1-Si2-C21	111.2(2)	
		S1-Si2-C22	110.9(1)	
		S2-Si2-C21	111.2(1)	
		S2-Si2-C22	110.6(1)	
		C21-Si2-C22	112.8(2)	

tane skeleton in compound **8a** has a half-chair conformation. The central four-membered ring of **9** was found to be completely planar (dihedral angle; S1–Si1–Si2–S2=0.7°). The Si–S bond lengths (2.148(2)—2.149(2) Å) are within the normal range. The Si–S–Si angles (80.64(6)° resp. $80.66(6)^{\circ}$) and smaller than those of other cyclodisilathianes (e.g. tetramethylcyclodisilathiane $82.46(6)^{\circ}$; 10a) tetra-*t*-but-oxycyclodisilathiane $82.2(1)^{\circ}$) and the S–Si–S angles (99.40(7) resp. 99.30(7)°) are larger than those of other cyclodisilathiane derivatives (97.54(7) 10a) and 97.8(1)° 10b). Non-bonding Si···Si and S···S distances are 2.78 and 3.28 Å, respectively, which are within the normal range of those of cyclodisilathianes (R_2Si)₂S₂(Si···Si; R=Me; 2.837(2), 10a) R=Cl; 2.725(1), 10c R=Br; 2.741(6) Å). 10c

Experimental

All manipulations were conducted under an argon atmosphere using standard Schlenk techniques. THF, diethyl ether, toluene, benzene, hexane, and pentane were dried over sodium benzophenone ketyl, distilled, and degassed prior to use. Triethylamine and carbon disulfide were dried over CaH₂, and distilled. The super hydride (THF solution of LiBEt₃H) was purchased from Aldrich. The reagents used in this study were purchased from commercial

sources and purified, dried, and degassed as necessary. Preparative gel permeation liquid chromatography (GPC) was carried out on LC-908 on JAIGEL 1H and 2H columns (Japan Analytical Industry, styrene-divinylbenzene copolymer, pore size 25 Å) with toluene as solvent. NMR spectra were run on either a Bruker AC400 or AC300 spectrometer at 400 or 300 MHz, respectively. ¹H and ¹³C NMR spectra were referenced to residual solvent resonances which were calibrated against tetramethylsilane. ²⁹Si NMR spectra were referenced to external tetramethylsilane. Mass spectra and high-resolution mass spectra were obtained on a JEOL JMS SX102A mass spectrometer. All melting points are uncorrected.

Preparation of $(Mes)_2Ge(SH)_2$ (2). A three-necked 500 mL round-bottom flask prepared with a gas inlet tube was charged with Et₃N (0.27 mL, 1.9 mmol) and diethyl ether (100 mL). The flask was cooled to -70 °C (dry ice/MeOH bath), and then H₂S was introduced at 1 atm for 1 h. A diethyl ether solution of Mes₂GeCl₂ (381 mg, 1.0 mmol; Et₂O, 150 mL) was added dropwise to the flask with bubbling of H₂S. After the addition was completed, the introduction of H₂S was stopped and the reaction mixture was gradually warmed to -40 °C with stirring for 12 h. The flask was then allowed to warm to room temperature by removing the cooling bath. Volatile components were removed from the flask in vacuo. The residue was extracted with small portions of hexane (a total of 20 mL), and each portion was filtered and combined. Hexane was removed from this in vacuo. The residue was purified by preparative GPC to yield 2 (325 mg, 86% yield) as a while solid. ¹H NMR (300 MHz, C_6D_6) δ =0.90 (2H, s), 2.03 (6H, s), 2.46 (12H, s), 6.61 (4H, s); 13 C NMR (75 MHz, C₆D₆) δ =20.8 (q), 24.0 (q), 130.1 (d), 138.2 (s), 139.6 (s), 141.6 (s); MS m/z 378 (M⁺). Found: C, 57.42; H, 6.38%. Calcd for C₁₈H₂₄GeS₂: C, 57.34; H, 6.41%.

Preparation of (Mes)₂GeS₂TiCp₂ (3a). A three-necked 30 mL round-bottom flask prepared with a solid inlet tube was charged with 2 (100 mg, 0.267 mmol) and THF (2.0 mL). LiEt₃BH (0.55 mL of a 1.0 M solution (M=mol dm⁻³) in THF) was added dropwise to the flask. After the addition was completed, the reaction mixture was stirred for 30 min. When Cp₂TiCl₂ (78.0 mg, 0.27 mmol) was added via a solid inlet tube, it was green in color. After stirring for 24 h, the green solution was concentrated in vacuo. The residue was extracted with small portions of benzene (a total of 10 mL), and each portion was filtered and combined. After removal of solvent, the residue was charged on preparative GPC to give 3a (103 mg, 70%) as a green crystalline solid. ¹H NMR (300 MHz, C_6D_6) $\delta = 2.02$ (6H, s), 3.03 (12H, s), 6.01 (10H, s), 6.73 (4H, s); 13 C NMR (75 MHz, C₆D₆) δ =20.9 (q), 24.0 (q), 119.0 (d), 128.5 (d), 139.3 (s), 130.3 (s), 143.2 (s); MS m/z 554 (M⁺). Found: m/z554.0623. Calcd for $C_{28}H_{32}S_2^{74}GeTi$: M, 554.0637.

Preparation of (Mes)₂GeS₂ZrCp₂ (3b). A three-necked 30 mL round-bottom flask prepared with a dropping funnel was charged with 2 (210.5 mg, 0.588 mmol) and THF (5.0 mL). After 1.0 M LiEt₃BH (1.13 mL, 1.13 mmol) was added, it was stirred for 30 min. When a THF solution of Cp₂ZrCl₂ (164 mg, 0.560 mmol) was added via a dropping funnel, this solution was yellow. After stirring for 20 h, the resulting yellow solution was concentrated in vacuo. The residue was extracted with small portions of benzene (a total of 15 mL), and each portion was filtered and combined. After removal of solvent, recrystallization of the residue from pentane gave 3b (300 mg, 90% yield) as a yellow solid. ¹H NMR (300 MHz, C_6D_6) $\delta = 2.08$ (6H, s), 2.99 (12H, s), 5.95 (10H, s), 6.73 (4H, s); 13 C NMR (75 MHz, C₆D₆) δ = 20.9 (q), 24.0 (q), 115.1 (d), 130.4 (d), 138.2 (s), 138.4 (s), 141.0 (s); MS m/z 596 (M⁺). Found: m/z 596.0198. Calcd for $C_{28}H_{32}S_2^{74}GeZr$: M, 596.0205.

Reaction of (Mes)₂GeS₂TiCp₂ (3a) with S₂Cl₂. A three-

necked 30 mL round-bottom flask was charged with **3a** (42.6 mg, 0.0769 mmol) and CS₂ (4.0 mL). The flask was cooled to -78 °C (dry ice/MeOH bath), and then a CS₂ (4.0 mL) solution of S₂Cl₂ (9.6 mg, 0.0711 mmol) was added dropwise to the flask. After 30 min, the solvent was removed in vacuo, and the residue was extracted with ca. 5 mL of hexane and then was filtered. After removal of solvent, the residue was purified by preparative GPC to yield **4** (18.1 mg, 53%) as a yellow oil. ¹H NMR (300 MHz, C₆D₆) δ =1.99 (6H, s), 2.38 (12H, s), 6.57 (4H, s); ¹³C NMR (75 MHz, C₆D₆) δ =20.9 (q), 23.8 (q), 129.9 (d), 136.2 (s), 142.2 (s), 142.7 (s); MS m/z 440 (M[†]). Found: C, 49.42; H, 5.12%. Calcd for C₁₈H₂₂GeS₄: C, 49.23; H, 5.04%.

Reaction of (Mes)₂**GeS**₂**ZrCp**₂ (**3b) with Ph**₂**GeCl**₂. A three-necked 10 mL round-bottom flask was charged with **3b** (100 mg, 0.168 mmol) and toluene (5.0 mL). Ph₂GeCl₂ (69.5 mg, 0.233 mmol) was added to the flask, and the mixture was refluxed for 20 h. After removal of the solvent, the residue was extracted with ca. 10 mL of benzene. After being filtered and purified with preparative GPC, the product **5** (46.4 mg, 52% yield) was yielded as a while solid. ¹H NMR (300 MHz, C₆D₆) δ =2.05 (6H, s), 2.71 (12H, s), 6.64 (4H, s), 7.06—7.15 (6H, m), 7.78—7.88 (4H, m); ¹³C NMR (75 MHz, C₆D₆) δ =20.9 (q), 23.6 (q), 128.8 (d), 130.3 (d), 130.4 (d), 133.6 (d), 138.5 (s), 139.50 (s), 139.52 (s), 142.2 (s); MS *m/z* 602 (M⁺). Found: C, 59.91; H, 5.28%. Calcd for C₃₀H₃₂Ge₂S₂: C, 59.87; H, 5.35%.

Preparation of [t-BuPh(HS)Si]₂ (6). A three-necked 500 mL round-bottom flask was charged with 1,2-di-t-butyl-1,1,2,2tetraphenyldisilane (10.0 g, 21.0 mmol) and toluene (370 mL). The flask was cooled to -15 °C with a cryogenic storage apparatus (EYELA COOL ESC-50). Trifluoromethanesulfonic acid (6.0 mL, 69.0 mmol) was slowly added to the mixture at -15 °C and the mixture was warmed to room temperature. It was stirred for 19 h. Solvent and remaining acid were removed under reduced pressure. The residue was dissolved in diethyl ether (370 mL), and Et₃N (6.0 mL, 43.0 mmol) was added. H₂S was introduced at 1 atm into the flask via a gas inlet tube for 5 h. It was stirred for 12 h. After removal of solvent, hexane (100 mL) was added and the salts were filtered. The solvent was removed in vacuo, and the white solid was twice recrystallized from hexane to yield pure 6 (meso form, 5.53 g, 67.4%) as while crystals. Mp 138—139 °C; ¹H NMR (400 MHz, C_6D_6) $\delta = 0.23$ (2H, s), 0.95 (18H, s), 7.16—7.18 (6H, m), 7.99—8.01 (4H, m); 13 C NMR (100 MHz, C₆D₆) δ =22.3 (s), 28.0 (q), 128.7 (d), 129.9 (d), 135.1 (s), 135.9 (d); ²⁹Si NMR (80 MHz, C_6D_6) $\delta = 1.10$; MS m/z 389 (M⁺ – 1), 333 (M⁺ – 57). Found: C, 61.31; H, 7.61; S, 16.42. Calcd for C₂₀H₃₀S₂Si₂: C, 61.48; H, 7.74; S. 16.41.

Preparation of 7a. A 50 mL round-bottom flask was charged with **6** (0.819 g, 2.1 mmol) and THF (20.0 mL). 1 M LiEt₃BH (4.6 mL, 4.6 mmol, THF solution) was added to the flask. It was stirred for 2.5 h. A THF (10.0 mL) solution of Cp₂TiCl₂ (0.522 g, 2.1 mmol) was added via a dropping funnel. The mixture was stirred for 24 h. After removal of solvent the green residue was extracted with benzene (a total of 30 mL). Salts were filtered and the solvent was removed in vacuo. The residue was purified by GPC (eluent; toluene) to afford **7a** (950 mg, 80%) as green crystals. Mp 113 °C; 1 H NMR (400 MHz, C₆D₆) δ=1.39 (18H, s), 5.77 (5H, s), 6.21 (5H, s), 7.18—7.25 (6H, m), 8.03—8.05 (4H, m); 13 C NMR (100 MHz, C₆D₆) δ=24.8 (s), 28.6 (q), 118.27 (d), 118.45 (d), 127.6 (d), 129.0 (d), 136.4 (d), 141.4 (s); 29 Si NMR (80 MHz, C₆D₆) δ=40.99; MS m/z 566 (M⁺), 509 (M⁺ – 57). Found: m/z 566.1422. Calcd for C₃₀H₃₈Si₂S₂Ti: M, 566.1433.

Preparation of 7b. A 50 mL round-bottom flask prepared

with a dropping funnel was charged with **6** (952 mg, 2.44 mmol) and THF (25.0 mL). 1 M LiEt₃BH (5.20 mL, 5.20 mmol, THF solution) was added to the solution. It was stirred for 30 min. When a THF (10 mL) solution of Cp₂ZrCl₂ (707 mg, 2.44 mmol) was added via a dropping funnel, it was yellow in color. After stirring for 22 h, the solvent was removed in vacuo. The residue was extracted with small portions of benzene (a total of 50 mL), and each portion was filtered and combined. After removal of solvent, the recrystallization of the residue from pentane gave **7b** (1.33 g, 90%) as yellow crystals. ¹H NMR (400 MHz, C₆D₆) δ =1.41 (18H, s), 5.66 (5H, s), 6.12 (5H, s), 7.10—7.25 (6H, m), 7.98—8.05 (4H, m); ¹³C NMR (100 MHz, C₆D₆) δ =24.4 (s), 28.5 (q), 115.1 (d), 115.3 (d), 127.6 (d), 129.1 (d), 136.3 (d), 140.3 (s); ²⁹Si NMR (80 MHz, C₆D₆) δ =31.73; MS m/z 608 (M⁺), 551 (M⁺ – 57). Found: m/z 608.1077. Calcd for C₃₀H₃₈S₂Si₂Zr: M, 608.1001.

Reaction of 7a with SCl₂. A 50 mL round-bottom flask was charged with 7a (247 mg, 0.436 mmol) and CS_2 (10.0 mL). The flask was cooled to -78 °C (dry ice/MeOH bath), and then a CS₂ (10.0 mL) solution of SCl₂ (45.0 mg, 0.436 mmol) was added dropwise to the solution. The solution color changed from green to red. After 30 min, it was warmed to room temperature. Solvent was removed in vacuo, and the residue was extracted with ca. 20 mL of pentane and filtered. After removal of solvent, the residue was recrystallized from pentane to yield 8a (120 mg, 90%) as yellow crystals. Mp 119 °C; ¹H NMR (400 MHz, C_6D_6) $\delta = 0.95$ (18H, s), 6.63—6.73 (6H, m), 6.90—6.91 (4H, m); ¹³C NMR (100 MHz, C_6D_6) $\delta = 22.5$ (s), 29.5 (q), 127.8 (d), 127.9 (d), 129.4 (d), 135.6 (s); ²⁹Si NMR (80 MHz, C₆D₆) δ = 28.42; MS m/z 420 (M⁺), 363 (M⁺-57). Found: C, 57.31; H, 6.61%. Calcd for C₂₀H₂₈S₃Si₂: C, 57.09; H. 6.66%.

Reaction of 7b with SCl₂. A 20 mL round-bottom flask was charged with **7b** (149 mg, 0.220 mmol) and CS₂ (5.0 mL). The flask was cooled to -78 °C (dry ice/MeOH bath), and then a CS₂ (3.0 mL) solution of SCl₂ (24.8 mg, 0.240 mmol) was added dropwise to the mixture. After 30 min, it was warmed to room temperature. Solvent was removed in vacuo, and the residue was extracted with ca. 20 mL of hexane and filtered. After removal of solvent, the residue was separated by GPC (eluent; toluene) to yield **8a** (85.8 mg, 93%) as yellow crystals.

Reaction of 7a with S₂Cl₂. A three-necked 30 mL round-bottom flask was charged with **7a** (134 mg, 0.237 mmol) and CS₂ (10.0 mL). The flask was cooled to -78 °C (dry ice/MeOH bath), and then a CS₂ (10.0 mL) solution of S₂Cl₂ (32.0 mg, 0.237 mmol) was added dropwise to the flask. The solution color changed from green to red. After 30 min, it was warmed to room temperature. Solvent was removed in vacuo, and the the residue was extracted with ca. 20 mL of pentane and it was filtered. After removal of solvent, the residue was recrystallized from pentane to yield **8b** (98.5 mg, 92%) as yellow crystals. ¹H NMR (90 MHz, C₆D₆) δ = 1.25 (18H, s), 7.03—7.16 (6H, m), 7.50—7.61 (4H, m); ²⁹Si NMR (80 MHz, C₆D₆) δ = -7.79; MS m/z 452 (M⁺), 420 (M⁺ -32), 395 (M⁺ -57). Found: C, 53.36; H, 5.92%. Calcd for C₂₀H₂₈S₄Si₂: C, 53.04; H, 6.19%.

Reaction of 7b with S₂Cl₂. A 30 mL round-bottom flask was charged with **7b** (259 mg, 0.425 mmol) and CS₂ (10.0 mL). The flask was cooled to -78 °C (dry ice/MeOH bath), and then a CS₂ (10.0 mL) solution of S₂Cl₂ (62.5 mg, 0.46 mmol) was added dropwise to the mixture. After 30 min, it was warmed to room temperature. Solvent was removed in vacuo, and the residue was extracted with ca. 20 mL of hexane and filtered. After removal of solvent, the residue was separated by GPC (eluent; toluene) to yield **8b** (127 mg, 66%) as yellow crystals.

Reaction of 7a with Se₂Cl₂. A three-necked 30 mL round-bottom flask was charged with **7a** (129 mg, 0.288 mmol) and CS₂ (8.0 mL). The flask was cooled to -78 °C (dry ice/MeOH bath), and then a CS₂ (8.0 mL) solution of Se₂Cl₂ (53.7 mg, 0.251 mmol) was added dropwise to the flask. The solution color changed from green to red. After 30 min, it was warmed to room temperature. Solvent was removed under reduced pressure, and the residue was extracted with ca. 10 mL of pentane and filtered. After removal of solvent, almost pure **8c** (112 mg, 90%) was yielded as a yellow solid. ¹H NMR (300 MHz, C₆D₆) δ =1.21 (18H, s), 6.92—7.03 (6H, m), 7.48—7.51 (4H, m); ¹³C NMR (100 MHz, C₆D₆) δ =23.4 (s), 29.3 (q), 127.8 (d), 129.3 (d), 133.6 (d), 135.6 (s); ²⁹Si NMR (80 MHz, C₆D₆) δ =30.0; MS mlz 546 (M⁺). Found: C, 44.23; H, 5.02%. Calcd for C₂₀H₂₈S₂Se₂Si₂: C, 43.94; H, 5.13%.

Reaction of 7b with Se₂Cl₂. A three-necked 30 mL round-bottom flask was charged with **7b** (139 mg, 0.228 mmol) and CS₂ (8.0 mL). The flask was cooled to -78 °C (dry ice/MeOH bath), and then a CS₂ (8.0 mL) solution of Se₂Cl₂ (53.7 mg, 0.251 mmol) was added dropwise to the flask. After 30 min, it was warmed to room temperature. Solvent was removed in vacuo, and the residue was extracted with ca. 10 mL of pentane and filtered. After removal of solvent, almost pure **8c** (123 mg, quant.) was yielded as a yellow solid

Reaction of 7a with Ph₂GeCl₂. A 20 mL round-bottom flask prepared with a reflux condenser was charged with **7a** (143 mg, 0.252 mmol) and toluene (10.0 mL). Ph₂GeCl₂ (75.0 mg, 0.252 mmol) was added to the flask, and the mixture was refluxed for 24 h. The solution color changed from green to red. After removal of solvent, the residue was extracted with ca. 20 mL of pentane. After being filtered and purified with GPC (eluent; toluene), the product **8d** (85.3 mg, 55%) was given as a white solid. ¹H NMR (90 MHz, C_6D_6) δ=1.26 (18H, s), 6.92—8.22 (20H, m); ¹³C NMR (75 MHz, C_6D_6) δ=22.5 (s), 28.5 (q), 127.7 (d), 128.2 (d), 128.72 (d), 128.76 (d), 129.77 (d), 130.2 (d), 133.81 (d), 133.85 (d), 134.3 (s), 136.2 (d), 139.5 (s), 139.8 (s); ²⁹Si NMR (80 MHz, C_6D_6) δ=17.43; MS m/z 616 (M^+), 559 (M^+ – 57). Found: C, 62.66; H, 6.22%. Calcd for $C_{32}H_{38}S_2GeSi_2$: C, 62.44; H, 6.21%.

Reaction of 7b with Ph₂GeCl₂. A 20 mL round-bottom flask prepared with a reflux condenser was charged with **7b** (131 mg, 0.215 mmol) and toluene (5.0 mL). A toluene (5.0 mL) solution of Ph₂GeCl₂ (111 mg, 0.373 mmol) was added to a toluene solution of **7b**, and the mixture was refluxed for 24 h. After removal of solvent, the residue was extracted with ca. 20 mL of benzene. After filtration and purification with GPC (eluent; toluene), the product **8d** (52.7 mg, 40%) was given as a while solid.

Desulfurization of 8b with P(NMe₂)₃. A 5 ϕ NMR tube was charged with **8b** (25 mg, 0.06 mmol) and benzene- d_6 (300 μL). Hexamethylphosphorous triamide (11 μL, 0.066 mmol) was added to a benzene solution of **8b**. The reaction was monitored by 1 H NMR spectrum. After 15 min, **8b** was completely consumed and the 1 H, 13 C, and 29 Si NMR spectra of the solution showed a single product, which agreed with those of **8a**.

Desulfurization of 8a with PPh3. A mixture of **8a** (100 mg, 0.238 mmol), triphenylphosphine (68.6 mg, 0.262 mmol) and 5 mL of hexane was heated at 65 °C for 1 h. White precipitates were filtered off through celite under argon atmosphere. After removal of solvent, the residue was recrystallized from pentane to give **9** (92.0 mg, *cis* : *trans*=1 : 9), quantitatively. For **9** (*trans* form) : Mp 193—196 °C; 1 H NMR (400 MHz, C_6D_6) δ =0.94 (18H, s), 7.14—7.19 (6H, m), 7.28—7.84 (4H, m); 13 C NMR (125 MHz, C_6D_6) δ =23.0 (s), 24.6 (q), 127.9 (d), 128.3 (d), 130.2 (d), 134.1 (s); 29 Si NMR (80 MHz, C_6D_6) δ =14.02; MS *m/z* 388 (M⁺), 331 (M⁺ – 57). For

9 (*cis* form): 1 H NMR (400 MHz, C₆D₆) δ = 1.12 (18H, s), 6.94—6.99 (6H, m), 7.70—7.72 (4H, m); 29 Si NMR (80 MHz, C₆D₆) δ = 13.93; MS m/z 388 (M⁺), 331 (M⁺ – 57). Found: C, 62.15; H, 6.85%. Calcd for C₂₀H₂₈S₂Si₂: C, 61.80; H, 7.21%.

Desulfurization of 8a with P(NMe₂)₃. A 5φ NMR tube was charged with **8a** (25 mg, 0.06 mmol) and benzene- d_6 (300 μL). Hexamethylphosphorous triamide (11 μL, 0.066 mmol) was added to a benzene solution of **8a**. The reaction was monitored by 1 H NMR spectrum. After 15 min, **8a** was completely consumed and the 1 H and 29 Si NMR spectra of the mixture agreed with those of **9** (*cis*: trans=1:9).

Crystallographic Analyses. A green crystal of dimensions $0.50 \times 0.50 \times 0.40 \text{ mm}^3$ for **7a**, a yellow crystal of dimensions $0.50 \times 0.50 \times 0.20$ mm³ for 8a, and a white crystal of dimensions $0.50 \times 0.50 \times 0.80 \text{ mm}^3$ for **9** obtained by recrystallization from a hexane or pentane were used for X-ray analyses. Diffraction measurements were made on an Enraf-Nonius CAD4 computer-controlled Kappa axis diffractometer by using graphite monochromatized Mo $K\alpha$ radiation. The unit cell was determined and refined from 25 randomly selected reflections obtained by using the CAD4 automatic search, center, index, and least-squares routines. Crystal data, data-collection parameters, and results of the analyses are listed in Table 2. All data processing was performed on a Micro VAX 3100 computer by using the MolEN structure-solving program obtained from Enraf-Nonius Corp., Delft, Netherlands. The ω -2 θ scan technique was adopted by varying the ω scan width as a function of θ . All intensities were corrected for Lorents and polarization factors as well as decay correction. An empirical absorption correction based on a series of ψ -scan was also applied to the data. Neutral-atom scattering factors were calculated by the standard procedures. 11a) An anomalous dispersion correction was applied to all non-hydrogen atoms. 11b) Full-matrix least-squares refinements minimized the function $\Sigma w(|F_o| - |F_c|)^2$, w=1. The molecular structures with atomic labeling schemes and the bond lengths and angles of 7a, 8a, and 9 are given in Figs. 1, 2, and 3 and Tables 3, 4, 5, and 6, respectively.¹²⁾

Authors are grateful to Shin-Etsu Chemical Co., Ltd. for their gifts of chlorosilanes. This work was supported by a Grant-in-Aid for Scientific Research for Ministry of Education, Science and Culture.

References

1) a) L. Birkofer and O. Stuhl, "The Chemistry of Organic

- Silicon Compounds," ed by S. Patai and Z. Rappoport, John Wiley & Sons, New York (1989), Part 1, pp. 706—721; b) D. A. Armitage ('Fred'), "The Chemistry of Organic Silicon Compounds," ed by S. Patai and Z. Rappoport, John Wiley & Sons, New York (1989), Part 2, pp. 1363—1394 and pp. 1395—1414.
- 2) a) J. X. McDermott, M. E. Wilson, and G. M. Whitesides, J. Am. Chem. Soc., **98**, 6529 (1976); b) M. A. Chaudhari and F. G. A. Stone, J. Chem. Soc. A, **1966**, 838; c) D. Sen and U. N. Kantak, Indian J. Chem., **9**, 254 (1971).
- 3) a) J. M. McCall and A. Shaver, *J. Organomet. Chem.*, **193**, C37 (1980); b) A. Shaver and J. M. McCall, *Organometallics*, **3**, 1823 (1984); c) D. M. Giolando, T. B. Rauchfuss, A. L. Rheingold, and S. R. Wilson, *Organometallics*, **6**, 667 (1987); d) J. Albertsen and R. Steudel, *J. Organomet. Chem.*, **424**, 153 (1992).
- 4) a) G. Hencken and E. Weiss, Chem. Ber., 106, 1747 (1973);
 b) H. Köpf and T. Klapötke, J. Organomet. Chem., 307, 319 (1986);
 c) P. J. Fagan, W. A. Nugent, and J. C. Calabrese, J. Am. Chem. Soc., 116, 1880 (1994);
 d) P. J. Fagan and W. A. Nugent, J. Am. Chem. Soc., 110, 2310 (1988).
 - 5) N. Choi, S. Sugi, and W. Ando, Chem. Lett., 1994, 1395.
- 6) N. Yamazaki, S. Nakahama, K. Yamaguchi, and T. Yamaguchi, *Chem. Lett.*, **1980**, 1355.
- 7) D. M. Giolando, T. B. Rauchfuss, and G. M. Clark, *Inorg. Chem.*, **26**, 3080 (1987).
- 8) K. L. McKillop, G. R. Gillette, D. R. Powell, and R. West, *J. Am. Chem. Soc.*, **114**, 5203 (1992).
- 9) a) V. A. Kutoglu, Z. Anorg. Allg. Chem., **390**, 195 (1972); b) V. A. Kutoglu, Acta Crystallogr., Sect. B, **B29**, 2891 (1973); c) E. G. Müller, J. L. Petersen, and L. F. Dahl, J. Organomet. Chem., **111**, 91 (1976).
- 10) a) W. E. von Schklower, Yu. T. Strutschkow, L. E. Guselnikow, W. W. Wolkowa, and W. G. Awakyam, Z. Anorg. All. Chem., 501, 153 (1983); b) K. Peters, D. Weber, and H. G. von Schnering, Z. Anorg. Allg. Chem., 519, 134 (1984); c) J. Peters, J. Mandt, M. Meyring, and B. Krebs, Z. Kristallogr., 156, 90 (1981).
- 11) a) "International Tables for X-Ray Crystallography," The Kynoch Press, Birmingham, England (1975), Vol. IV, Table 2.2B, pp. 90—101; b) "International Tables for X-Ray Crystallography," The Kynoch Press, Birmingham, England (1975), Vol. IV, Table 2.3.1, pp. 149—150.
- 12) The complete $F_0 F_c$ data are deposited as Document No. 69029 at the Office of the Editor of Bull. Chem. Soc. Jpn.